If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+11x-990=0
a = 7; b = 11; c = -990;
Δ = b2-4ac
Δ = 112-4·7·(-990)
Δ = 27841
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-\sqrt{27841}}{2*7}=\frac{-11-\sqrt{27841}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+\sqrt{27841}}{2*7}=\frac{-11+\sqrt{27841}}{14} $
| 35x^2-31x=24 | | 4^3x-11=1/16 | | 4^3x-11=16 | | 3^4x-7=243 | | 35x^2-24x=31 | | 0.14(y-2)+0.16y=0.20y-0.9 | | -2+4|4x-4|=30 | | -2+4|4x−4|=30 | | -8k=3 | | 7^3x+6=22 | | −2+4|4x−4|=30 | | 2p=-32 | | 7+8x=2x-29= | | 11/15=w−8/15 | | 9x+118=4x^2+80x+400 | | 1/2(8x+x)=8-x/2 | | 7x+300=5x+500 | | 23g=230 | | -x^2+3,5x-1,5=0 | | 3m-20-2m=4 | | 5/6b=3/5 | | -9=6+5u | | 5/(x+1)-3/2=8/(3x+3) | | w/4-2=22 | | 7+5v=27 | | (-23)r=4 | | 1/8(x)=1 | | 7x-7=3x+23 | | 13(s-40)+95=212 | | 3=u/4 | | 12+4(7-5x)=16-14x | | 12=5y+y |